A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids.
نویسندگان
چکیده
Dietary polyunsaturated fatty acids (PUFA) are negative regulators of hepatic lipogenesis that exert their effects primarily at the level of transcription. Sterol regulatory element-binding proteins (SREBPs) are transcription factors responsible for the regulation of cholesterol, fatty acid, and triglyceride synthesis. In particular, SREBP-1 is known to play a crucial role in the regulation of lipogenic gene expression in the liver. To explore the possible involvement of SREBP-1 in the suppression of hepatic lipogenesis by PUFA, we challenged wild-type mice and transgenic mice overexpressing a mature form of SREBP-1 in the liver with dietary PUFA. In the liver of wild-type mice, dietary PUFA drastically decreased the mature, cleaved form of SREBP-1 protein in the nucleus, whereas the precursor, uncleaved form in the membranes was not suppressed. The decreases in mature SREBP-1 paralleled those in mRNAs for lipogenic enzymes such as fatty acid synthase and acetyl-CoA carboxylase. In the transgenic mice, dietary PUFA did not reduce the amount of transgenic SREBP-1 protein, excluding the possibility that PUFA accelerated the degradation of mature SREBP-1. The resulting sustained expression of mature SREBP-1 almost completely canceled the suppression of lipogenic gene expression by PUFA in the SREBP-1 transgenic mice. These results demonstrate that the suppressive effect of PUFA on lipogenic enzyme genes in the liver is caused by a decrease in the mature form of SREBP-1 protein, which is presumably due to the reduced cleavage of SREBP-1 precursor protein.
منابع مشابه
Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit.
Sterol regulatory element-binding protein (SREBP)-1 is a key transcription factor for the regulation of lipogenic enzyme genes in the liver. Polyunsaturated fatty acids (PUFA) selectively suppress hepatic SREBP-1, but molecular mechanisms remain largely unknown. To gain insight into this regulation, we established in vivo reporter assays to assess the activities of Srebf1c transcription and pro...
متن کاملImplication of trans-11,trans-13 conjugated linoleic acid in the development of hepatic steatosis
SCOPE Conjugated linoleic acids are linoleic acid isomers found in the diet that can also be produced through bacterial metabolism of polyunsaturated fatty acids. Our objective was to evaluate the contribution of fatty acid metabolites produced from polyunsaturated fatty acids by the gut microbiota in vivo to regulation of hepatic lipid metabolism and steatosis. METHODS AND RESULTS In mice wi...
متن کاملThe role of liver X receptor-alpha in the fatty acid regulation of hepatic gene expression.
Liver X receptors (LXR) alpha and beta play an important role in regulating the expression of genes involved in hepatic bile and fatty acid synthesis, glucose metabolism, as well as sterol efflux. Studies with human embryonic kidney 293 cells indicate that unsaturated fatty acids interfere with oxysterols binding to LXR and antagonize oxysterol-induced LXRalpha activity. In this report, we eval...
متن کاملNonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription.
This review addresses the hypothesis that polyunsaturated fatty acids (PUFA), particularly those of the n-3 family, play pivotal roles as "fuel partitioners" in that they direct fatty acids away from triglyceride storage and toward oxidation and they enhance glucose flux to glycogen. In doing this, PUFA may reduce the risk of enhanced cellular apoptosis associated with excessive cellular lipid ...
متن کاملRegulation of ovine and porcine stearoyl coenzyme A desaturase gene promoters by fatty acids and sterols.
Stearoyl CoA desaturase (SCD) is responsible for converting SFA into MUFA and plays an important role in regulating the fatty acid composition of tissues. Although the number of SCD isoforms differs among species, SCD-1 is the predominant isoform expressed in the major lipogenic tissues of all species studied. The SCD-1 gene promoter region has been cloned for several species, including the hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 50 شماره
صفحات -
تاریخ انتشار 1999